
1. daisy:268 (Plakosh, Daniel)

Safe Integer Operations
Daniel Plakosh, Software Engineering Institute [vita1]

Copyright © 2005 Pearson Education, Inc.

2005-09-27

Integer operations can result in error conditions and lost data, particularly when inputs to these
operations can be manipulated by a malicious user. A solution to this problem is to use a safe integer
library for all operations on integers where one or more of the inputs could be influenced by an untrusted
source.

Development Context

Integer operations

Technology Context

C, C++, IA-32, Win32, UNIX

Attacks

Attacker executes arbitrary code on machine with permissions of compromised process or changes the
behavior of the program.

Risk

Integers in C and C++ are susceptible to overflow, sign, and truncation errors that can lead to exploitable
vulnerabilities.

Description

Integer operations can result in error conditions and lost data, particularly when inputs to these
operations can be manipulated by a malicious user.

The first line of defense against integer vulnerabilities should be range checking, either explicitly or
through strong typing. However, it is difficult to guarantee that multiple input variables cannot be
manipulated to cause an error to occur in some operation somewhere in a program.

An alternative or ancillary approach is to protect each operation. However, because of the large number
of integer operations that are susceptible to these problems and the number of checks required to prevent
or detect exceptional conditions, this approach can be prohibitively labor intensive and expensive to
implement.

A more economical solution to this problem is to use a safe integer library for all operations on integers
where one or more of the inputs could be influenced by an untrusted source. Figure 1 shows examples of

Safe Integer Operations 1
ID: 312 | Versie: 2 | Datum: 28/03/06 12:02:28

daisy:268

when to use safe integer operations.

Figure 1. Checking for overflow when adding two signed integers

Use Safe Integer Operations

void* CreateStructs(int StructSize, int HowMany) {
SafeInt<unsigned long> s(StructSize);
s *= HowMany;
return malloc(s);

}

Don't Use Safe Integer Operations

void foo() {
int i;
for (i = 0; i < INT_MAX; i++)
....

}

The first example shows a function that accepts two parameters specifying the size of a given structure
and the number of structures to allocate that can be manipulated by untrusted sources. These two values
are then multiplied to determine what size memory to allocate. Of course, the multiplication operation
could easily overflow the integer variable and provide an opportunity to exploit a buffer overflow.

The second example shows when not to use safe integer operations. The integer i is used in a tightly
controlled loop and is not subject to manipulation by an untrusted source, so using safe integers would
add unnecessary performance overhead.

Safe integer libraries use different implementation strategies. The gcc library uses postconditions to
detect integer errors. SafeInt C++ class tests preconditions to prevent integer errors. The Michael
Howard library takes advantage of machine-specific mechanisms to detect integer errors. We compare
and contrast these approaches in the remainder of this section.

GCC
The gcc runtime system generates traps for signed overflow on addition, subtraction, and multiplication
operations for programs compiled with the -ftrapv flag. To accomplish this, calls are made to existing,
portable library functions that test an operation’s postconditions and call the C library abort()
function when results indicate that an integer error has occurred.

Figure 2. Checking for overflow when adding two signed integers

1. Wtype __addvsi3 (Wtype a, Wtype b) {
2. const Wtype w = a + b;
3. if (b >= 0 ? w < a : w > a)
4. abort ();
5. return w;
6. }

Figure 2 shows a function from the gcc runtime system that is used to detect overflows resulting from
the addition of signed 16-bit integers. The addition operation is performed on line 2 and the results are
compared to the operands to determine whether an overflow condition has occurred. For _addvsi3(),
if b is non-negative and w < a, an overflow has occurred and abort() is called. Similarly, abort()
is also called if b is negative and w > a.

C Language Compatible Library

Safe Integer Operations 2
ID: 312 | Versie: 2 | Datum: 28/03/06 12:02:28

Michael Howard has written parts of a safe integer library that detects integer overflow conditions using
architecture-specific mechanisms [Howard 03b].

Figure 3. Unsigned integer addition and multiplication operations

1. in bool UAdd(size_t a, size_t b, size_t *r) {
2. __asm {
3. mov eax, dword ptr [a]
4. add eax, dword ptr [b]
5. mov ecx, dword ptr [r]
6. mov dword ptr [ecx], eax
7. jc short j1
8. mov al, 1 // 1 is success
9. jmp short j2
10. j1:
11. xor al, al // 0 is failure
12. j2:
13. };
14. }

Figure 3 shows a function that performs unsigned addition. Figure 5 shows a version of the vulnerable
program from Figure 4 that has been modified (shown in bold) to use the Howard library. The
calculation of the total length of the two strings is performed using the UAdd() call on lines 3–4 with
appropriate checks for error conditions. Even adding one to the sum can result in an overflow and needs
to be protected.

The Howard approach can be used in both C and C++ programs. However, the API is awkward to use
and portability to other hardware architectures is lost due to the use of embedded Intel assembly
instructions. Ironically, the use of embedded Intel assembly instructions does not necessarily improve
the performance of the final assemblies because these instructions can impede the compiler’s ability to
generate fully optimized code.

Figure 4. Truncation error involving the sum of two lengths

1. int main(int argc, char *const *argv) {
2. unsigned short int total;
3. total = strlen(argv[1])+strlen(argv[2])+1;
4. char *buff = (char *) malloc(total);
5. strcpy(buff, argv[1]);
6. strcat(buff, argv[2]);
7. }

Figure 5. C language compatible library solution

1. int main(int argc, char *const *argv) {
2. unsigned int total;
3. if (UAdd(strlen(argv[1]), 1, &total) && UAdd(total, strlen(argv[2]), &total)) {
4. char *buff = (char *)malloc(total);
5. strcpy(buff, argv[1]);
6. strcat(buff, argv[2]);
7. }
8. else {
9. abort();
10. }
11. }

SafeInt Class
SafeInt is a C++ template class written by David LeBlanc [LeBlanc 04]. SafeInt generally implements
the precondition approach and tests the values of operands before performing an operation to determine
whether errors might occur. The class is declared as a template, so it can be used with any integer type.
Nearly every relevant operator has been overridden except for the subscripting operator [].

Safe Integer Operations 3
ID: 312 | Versie: 2 | Datum: 28/03/06 12:02:28

Figure 6. Checking for overflow when adding two signed integers

1. if (!((rhs ^ lhs) < 0)) { //test for +/- combo
2. //either two negatives or two positives
3. if (rhs < 0) {
4. //two negatives
5. if (lhs < MinInt() - rhs) { //remember rhs < 0
6. throw ERROR_ARITHMETIC_UNDERFLOW;
7. }
8. //ok
9. }
10. else {
11. //two positives
12. if (MaxInt() - lhs < rhs) {
13. throw ERROR_ARITHMETIC_OVERFLOW;
14. }
15. //OK
16. }
17. }
18. //else overflow not possible
19. return lhs + rhs;

Figure 6 shows a section of code from the SafeInt class that checks for overflow in signed integer
addition. Figure 7 shows a version of the vulnerable program from Figure 4 that has been modified
(boldface type) to use the SafeInt library. Lines 1–4 show the implementation for the SafeInt + operator,
which is invoked twice on line 9 of the main routine. The variables s1 and s2 are declared as SafeInt
types on lines 7 and 8. In both cases, the SafeInt class is instantiated as an unsigned long type. When the
+ operator is invoked (twice) on line 9, it uses the safe version of the operator implemented as part of the
SafeInt class. The safe version of the operator guarantees that an exception is generated if the result is
invalid.

Figure 7. SafeInt solution

1. //addition
2. SafeInt<T> operator +(SafeInt<T> rhs) {
3. return SafeInt<T>(addition(m_int,rhs.Value()));
4. }
5. int main(int argc, char *const *argv) {
6. try {
7. SafeInt<unsigned long> s1(strlen(argv[1]));
8. SafeInt<unsigned long> s2(strlen(argv[2]));
9. char *buff = (char *) malloc(s1 + s2 + 1);
10. strcpy(buff, argv[1]);
11. strcat(buff, argv[2]);
12. }
13. catch(SafeIntException err) {
14. abort();
15. }
16. }

The SafeInt library has several advantages over the Howard approach. Because it is written entirely in
C++, it is more portable than safe arithmetic operations that depend on assembly language instructions.
It is also more usable: arithmetic operators can be used in normal inline expressions, and SafeInt uses
C++ exception handling instead of C-style return code checking. Performance of the library depends on
many variables, but is generally better than the Howard approach when the optimizer is enabled.

The precondition approach could also be implemented in C-compatible libraries, although the
advantages derived from C++ would not be realized.

References

[Howard 03b] Howard, Michael. An Overlooked Construct and
an Integer Overflow Redux.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure09112003.asp

Safe Integer Operations 4
ID: 312 | Versie: 2 | Datum: 28/03/06 12:02:28

(2003).

[LeBlanc 04] LeBlanc, David. Integer Handling with the C++
SafeInt Class.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure01142004.asp
(2004).

Pearson Education, Inc. Copyright
This material is excerpted from Secure Coding in C and C++, by Robert C. Seacord, copyright © 2006
by Pearson Education, Inc., published as a CERT® book in the SEI Series in Software Engineering. All
rights reserved. It is reprinted with permission and may not be further reproduced or distributed without
the prior written consent of Pearson Education, Inc.

Velden

Naam Waarde

Copyright Holder Pearson Education

Velden

Naam Waarde

is-content-area-overview false

Content Areas Knowledge/Coding Practices

SDLC Relevance Implementation

Workflow State Publishable

Safe Integer Operations 5
ID: 312 | Versie: 2 | Datum: 28/03/06 12:02:28

